
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Using Variational Autoencoders to Improve FM Synthesizer
Patch Discovery

Bryan Hoyle
bhoyle@gmu.edu

Technical Report

Abstract

Variational Autoencoders (VAEs) have been used to au-
tomatically discover a useful compression of a complex
domain into smooth spaces in which simple euclidean
operations can be performed in order to discover and
create useful new examples within a problem space. This
paper applies this technique to the domain of patch dis-
covery in Frequency Modulation (FM) synthesis in or-
der to turn a highly non-linear mixed metric parameter
space into a smooth space in which a simple hill climber
with human feedback can be used. This is then inte-
grated into Edisyn, a synthesizer patch editor with auto-
mated patch discovery mechanisms, in order to provide
a new algorithm with which it can operate. This paper
then discusses qualitative results as well as future work
to gather quantitative data with which it can compare
against other prior results.

1 Introduction

When dealing with synthesizers, a patch is the collection
of parameters describing a specific set of values on a
particular synthesizer in order to create a specific tim-
bre. The goal of creating patches is to create sounds that
fulfill some goal in the context of a creative audio work.
These goals can be as varied as creating a sound similar
to a bowed string instrument to creating a sound effect
for a game such as an alarm or a laser. The particularly
important part of this process that the artist generally
has to do manually is find a way to map the idea they
have in their head to the values of the patch that can
accomplish this. However, this is a difficult task for mul-
tiple reasons: synthesizers can have poorly designed
interfaces, limited ways to modify patches, or be funda-
mentally difficult to understand. Of the common types
of synthesizers, the one most widely regarded as difficult
to program is frequency modulation (FM) synthesis [8].

FM synthesis is highly non-linear and non-intuitive and
it is difficult to predict how a change in one parameter
will affect the overall sound. Because of this, creating
useful patches often takes a long time and lots of trial
and error. Therefore, it is of interest to reduce the barrier
of entry to this task.

Common efforts in reducing this difficulty come in
many forms. The most common is the creation of patch
editing software that provides a way to edit parameters
in a UI that is more uniform across synthesizers or in
a medium that is more convenient. A menu on a hard-
ware synthesizer that takes multiple button presses and
scrolling on a wheel to open and navigate through can
become a nested dropdown on a computer, for exam-
ple. While this helps with some of the UX issues, there
are still the problems with parameter mapping and un-
derstanding at play which need to be addressed. Less
commonly, there have been attempts to create automated
patch discovery tools [9] which use various techniques
to attempt to assist the artist in creating patches by ei-
ther reducing complexity or searching the space and
presenting possibly interesting ones to the user directly.
Edisyn [9], for example, is an open source patch editor
that attempts to address both of these issues simultane-
ously by providing both a convenient consistent UI to
multiple synthesizers as well as ways to assist in patch
discovery using evolutionary computation (EC) meth-
ods.

EC methods are a set of algorithms which attempt to
search for optimal examples within some space. They do
this by using a concept called a fitness function which is
nothing more than a way to score an example with a met-
ric of “goodness.” They then use various techniques to
narrow down what parts of the space they are working
within. One of the most common (and simple) EC tech-
niques used is called a hill-climber: it samples multiple
points in a space, scores them with the fitness function,
then attempts to figure out which direction is “uphill”
and will attempt to continue in that direction.

1



One of the major problems with applying hill-climbing
to synthesizer patches is the specifics of the patch struc-
ture itself: patches often have non-metric parameters
(such as square-wave vs sawtooth-wave) which create
large audible non-linearities in the search space. Another
issue is the size of the space in which it is searching as
high dimensional spaces can often be difficult to find a
direction in. Lastly, there is very little way to automati-
cally rank candidates, as how good a patch is depends
entirely on its purpose and the ear of the artist creating
it. Thus, EC methods in this area usually use the artist
themselves as the fitness function, but this introduces its
own host of issues such as human attention span and
speed of ranking. Most solutions in this space, therefore,
attempt to limit the number of poor patches presented to
the artist and attempt to converge quickly to the desired
patch [9].

In order to support these goals, this paper attempts to
add to the growing collection of patch discovery meth-
ods by using a machine learning model called a Varia-
tional Autoencoder (VAE) to simplify the space within
which the EC needs to search. In reducing the space
to hopefully more useful regions as well as making it
smooth, this technique ideally mitigates some of the is-
sues that other attempts have run into. We then integrate
the VAE into Edisyn and use it in conjunction with a
hill-climber to generate patches and provide qualitative
comparisons against prior techniques.

2 Previous Work

Prior work on assistive patch exploration has been var-
ied, but many use evolutionary techniques [10, 1, 9],
with [1] being particularly well known as it became
used in a commercial product at one point. Interestingly,
some modern approaches to timbre generation sidestep
patches entirely, with techniques like Wavenet Autoen-
coders [2] being used in a Google Magenta project called
the NSynth that generate audio directly from the neural
net architecture.

2.1 Edisyn

Of note to this research is Edisyn. Edisyn is a patch
editor for many synthesizers which is open source and
written in Java. Edisyn comes with a set of algorithms for
patch discovery, namely a hill-climber and a constrictor,
which uses interactive-EC in order to facilitate human-
computer interaction [9]. Edisyn comes with multiple
EC techniques, such as a hill climber which attempts
to climb in the patch space directly using techniques to
attempt to avoid steep non-linearities, and a constrictor
which attempts to bound search within a section of tim-
bral space in order to reduce the area within which it
has to look. The techniques used in Edisyn performed
statistically significantly better than direct patch creation.

An example of Edisyn’s hill climbing interface can be
seen in Figure 1.

2.2 Variational Autoencoders

An autoencoder is a machine learning technique which
uses statistical methods to compress information by dis-
covering commonalities within a set of data. Specifically,
they attempt to take high dimensional data and learn a
smaller space, known as a latent space, that hopefully
can still represent the useful qualities of the original
data. They achieve this by taking samples, encoding
them into the latent space, then decoding them back
into the original space and penalizing the autoencoder
based on how different the decoded version is from the
encoded version. Variational Autoencoders attempt to
extend this technique to not only learn a compressed
space, but a smooth space, in which two samples that
are close to each other in this latent space should share
similar characteristics in their original space.

The way they work is that they use posterior distri-
bution approximations in combination with standard
autoencoders in order to, ideally, create smooth la-
tent spaces [6]. Specifically, for this paper, we use β-
Variational Autoencoders [4] in order to be able to con-
trol the amount of smoothness of the discovered latent
space. These latent spaces can then be used for many
tasks, such as semantic distance between texts [5], image
generation [11], and other tasks which require finding
some sort of euclidean vector space for a complex do-
main. The information compressive nature of autoen-
coders also generally mean that the space that is created
is generally less semantically sparse: it is harder to find
a point in the compressed space (within some bounds)
that decompresses to something out-of-task than it is to
find an out-of-task sample in the original domain. For
the purposes of this paper, an out-of-task sample would
be a non-useful patch.

The way Variational Autoencoders achieve the smooth
latent space is by learning a set of distributions dur-
ing training rather than just directly compressing. For
each latent dimension, two parameters are learned: a
mean (µ) and a variance (σ). During training, the VAE
compresses down to these two parameter vectors then,
instead of directly decompressing from µ, it samples
from a normal distribution described by those param-
eters. That sampled value is then fed through the de-
compressor and treated like the output from a standard
autoencoder. Intuitively, this makes sense: you are teach-
ing the network that anything in a small radius around
each point in the latent space should decompress to the
same/similar value, creating smoothness. Due to the
fact that Gaussians will sample less often further away,
the requirement for similarity should also fall off over
distance. In order to get a gradient to backpropagate
through this sampling step, a reparameterization trick
is used: N (µ, σ) = µ + σ · N (0, 1), thus the derivative

2



Figure 1: Edisyn’s hill climber interface. Note that the user can rank up to 3 patches which they like which will be
used to generate the new patches. There is also an area to store patches that were particularly liked so one can reuse
them later. The amount of randomness in the algorithm is controlled by the “Mutation Rate” knob.

in respect to µ and σ can be easily found by just treating
N (0, 1) as a constant. In order to stop the network from
learning a distribution with a σ of 0, thus reducing the
network to a standard autoencoder, a Kullback–Leibler
(KL) divergence term between the learned distribution
and a standard normal is added, thus penalizing the
network the further from standard normal it becomes.
This KL term is scaled by a parameter called β, which
allows one to tune the amount of smoothness required
for the task [4].

After the model is trained, one can discard the σ pa-
rameter and only use µ. This means that it has an identi-
cal interface to standard autoencoders for compression
and decompression tasks after training, but ideally with
a latent space in which euclidean operations make sense.

3 Implementation

For this project, we focused specifically on the Yamaha
DX7 as the synthesizer to build the autoencoder for. This
is because it is a hard to program FM synthesizer as
well as being one of the most popular synthesizers ever
created. This means that there is potential interest in
any solution that improves patch discovery as well as
a large corpus of human curated patches to use to train
a Variational Autoencoder. For this project we used
approximately 26,000 patches, 5,000 of which were used
as a test set to monitor reproduction loss during training.

The patches were preprocessed into vectors. For met-
ric parameters, we scaled the value between zero and
one based on the range of the parameter. For categorical
parameters, we used one-hot encoding. We then concate-
nated these values together to create a single vector of
length 225. This was used as the input and target of the
VAE. For loss, we initially used a mixed loss function
with mean squared error (MSE) for the metric parame-
ters and cross-entropy for the categorical parameters, but
that had loss scaling issues and had trouble converging.
Thus, we settled on MSE for the loss across the entire out-
put, which gave good results. This loss was combined
with the KL-divergence loss term with a β value of 0.1,
giving a space that is a little less smooth but with better
reconstruction results. The inner dimension of the final
model was 64, which seemed to give a good tradeoff
between reconstruction loss and space constriction. The
nonlinearity used between layers was SELU [7] due to its
excellent gradient and self-normalizing characteristics.
The full architecture is summarized in Table 1.

After the model was trained, it was integrated into the
hill climber. The hill climber would populate the initial
list by feeding the initial patch into the encoder section of
the network, sample a Gaussian centered at the µ vector
given by the encoder and a variance controlled by the
Mutation Rate parameter as seen in Figure 1. These vec-
tors would then become the next generation of children
with which hill-climbing can be performed.

If only one child is selected to mutate on, then the next

3



Layer Name Input Size Output Size Activation
Encoder 1 225 128 SELU
Encoder 2 128 76 SELU
Encoder 3 76 64 SELU
µ Layer 64 64 None
σ Layer 64 64 None
Decoder 1 64 76 SELU
Decoder 2 76 128 SELU
Decoder 3 128 225 SELU

Table 1: Network architecture for the final VAE model.
Note that each layer listed is a fully connected linear
layer.

generation is created by the technique used to create the
initial samples, but centered around the chosen child. If
two children are selected, half of the children are gener-
ated around the highest ranked point, a quarter around
the second highest ranked point, and a quarter are sam-
pled from around their latent vector averages. If three
children are selected, a similar process is run as for two
children, but the children are also divided up among all
of the possible combinations of vector averages between
the three selected children, including the overall average
point. At any point, a user can select a child to store in
the bank of six patches at the top to use as a reference
for later.

After the user runs this loop for a while, they can select
the patch they like the most and the process is complete.

4 Qualitative Results

Due to time constraints, a quantitative comparison
against the results given in [9] could not be given, how-
ever, qualitative results can be discussed. The author
was able to use the hybrid VAE-Hill-Climbing technique
to generate useful, interesting, or musical patches in a
few minutes each. This is in comparison to the half-
hour or even longer it often takes to do the same process
manually. The patches generated by this technique were
generally mostly usable directly out of the algorithm,
often with no tweaking necessary. On the occasions that
a patch did require tweaking, it only required about a
minute and was pretty close to finished. The timbral
quality of patches that were generated during the hill
climbing exploration steps were not always great, but
it did feel like it was better than the previously imple-
mented versions in Edisyn in several ways: the first
being that it generates much more diverse useful sounds
with less time spent exploring, and, secondly, the differ-
ences between specific children were often different in
more tangible ways rather than being the same patch
but with more or less vibrato or tremolo. There were
also fewer unexpected abrupt changes between children.
This lends itself to finding useful patches quickly and

allowing the user to get a wider range of sounds rather
than being stuck in large swaths of similar sounding
space. However, this diversity in the patches sometimes
creates a good bit of unusable children, which can re-
quire multiple iterations of generation before a useful
child is discovered. The technique felt better to use in
general and seemed immediately useful.

5 Conclusion and Future Work

In order to confirm or deny the author’s intuitions, how-
ever, an experiment setup similar to the one given in [9]
needs to be conducted. If there is a statistically signif-
icant improvement over the technique given, it can be
assumed that the new version is better at finding patches
that are considered musical or useful. Doing a larger hy-
perparameter search over architectures for embedding
could also give better results, as the combined encoder-
decoder loss leaves a lot to be desired over a standard
autoencoder (which, given the same architecture, had
half the loss of the VAE), meaning that a good bit of
the patch information is being destroyed. Additionally,
other generative techniques may be considered, such as
Generative Adversarial Networks [3], which may give
better curated patches, limiting the amount of time re-
quired to listen to obvious rejects. Other future work in-
cludes creating a system in which a collection of patches
along with some metadata can be automatically fed into
a program which generates and trains a VAE such that
it can be rapidly integrated with Edisyn. Overall, this
technique is promising, but needs proving out before
any definite conclusions can be made.

References

[1] P. Dahlstedt. A mutasynth in parameter space: In-
teractive composition through evolution. Organised
Sound, 6, 07 2001.

[2] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck,
K. Simonyan, and M. Norouzi. Neural audio syn-
thesis of musical notes with wavenet autoencoders.
2017.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial networks, 2014.

[4] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glo-
rot, M. Botvinick, S. Mohamed, and A. Lerchner.
beta-vae: Learning basic visual concepts with a con-
strained variational framework. 2016.

[5] N. Jung and H. I. Choi. Continuous semantic topic
embedding model using variational autoencoder,
2017.

4



[6] D. P. Kingma and M. Welling. Auto-encoding vari-
ational bayes, 2014.

[7] G. Klambauer, T. Unterthiner, A. Mayr, and
S. Hochreiter. Self-normalizing neural networks,
2017.

[8] S. Luke. Computational Music Synthesis. Ze-
roth edition, 2019. Available for free at
http://cs.gmu.edu/∼sean/book/synthesis/.

[9] S. Luke. Stochastic synthesizer patch exploration
in Edisyn. In International Conference on Computa-
tional Intelligence in Music, Sound, Art and Design
(EvoMUSART), 2019.

[10] J. McDermott, M. O’Neill, and N. J. L. Griffith. In-
teractive EC Control of Synthesized Timbre. Evolu-
tionary Computation, 18(2):277–303, 06 2010.

[11] A. Sagar. Generate high resolution images with
generative variational autoencoder, 2020.

5


