
GNU/Linux & UNIX

GNU/Linux & UNIX

Bryan Hoyle

October 3, 2016



GNU/Linux & UNIX
GNU/Linux History

UNIX History

I UNIX was created in 1969 as a alternative to a more complex operating
system called Multics.

I Originally named UNICS (UNiplexed Information and Computing Service)
as a play on Multics (Multiplexed Information and Computer Services),
they later settled on UNIX.

Figure: Ken Thompson and Dennis Ritchie, two of the creators of UNIX



GNU/Linux & UNIX
GNU/Linux History

UNIX History (Cont.)

I It was created primarily by Ken Thompson, Dennis Ritchie, and Brian
Kernighan

I 4 years later, UNIX was rewritten in C to make it easier to port to other
machines.

I It was developed to be a more modular kernel architecture than previous
operating systems.



GNU/Linux & UNIX
GNU/Linux History

GNU/Linux

I Later, a UNIX derivative called MINIX was created, but, frustrated with
its licensing, Linus Torvalds creates a competitor called Linux.

I Originally, it used MINIX utilities but soon switched to GNU utilities
creating a system that is called GNU/Linux

Figure: Linus Torvalds



GNU/Linux & UNIX
Sidenote about Free Software and GNU

Free Software vs Open Source

I Free Software (Free as in “Freedom” and free as in “free beer”) means
that the software has no restrictions for the user on source distribution

I The GNU foundation created and propagates the GPL and the
LGPL

I Open Source Software only guarantees that the source code is available

I There are no guarantees for the user on distribution rights

I Both of these are positive things and each have their own unique set of
pros and cons



GNU/Linux & UNIX
UNIX Principles

UNIX Principles

I UNIX has a few core philosophies

I The most notable is “Do one thing and do it well.”

I Thus, UNIX-based systems use a collection of tools called “utilities,”
which are composable to be able to do more complicated tasks.



GNU/Linux & UNIX
UNIX Principles

The Shell

I The most important utility is called the “shell.”

I This is the tool that manages input from the user and output from
the programs they run

I The most common shells are derived from “sh,” with the most popular
being “bash.”



GNU/Linux & UNIX
UNIX Principles

Bash

I Bash is an abbreviation of Bourne Again Shell

I When started, it displays what is called a prompt

Prompt Example
bhoyle@Desktop /home/bhoyle $

I The first bit is the user and the machine name

I The next part is called the “current working directory”

I The dollar sign indicates where you can begin typing



GNU/Linux & UNIX
UNIX Principles

SSH

I ssh is a tool that opens a shell on a remote machine

I This is incredibly useful for logging into zeus and mason and general
remote work



GNU/Linux & UNIX
UNIX Principles

Side note about paths

I If you are used to windows, you may be used to path names looking like
C:\Program Files\ or D:\Documents and Settings\

I In UNIX-like systems, however, the paths look like /home/bhoyle or
/mnt/usb/school

I Note that there are no drive letters nor are there backslashes
I Separate drives are actually just directories in UNIX: there is no

need for drive letters



GNU/Linux & UNIX
UNIX Principles

Bash (cont.)

I To run a program in bash, one just types the name of the program into
the shell

Command Example
bhoyle@Desktop /home/bhoyle $ pwd
/home/bhoyle
bhoyle@Desktop /home/bhoyle $

I pwd prints the current working directory



GNU/Linux & UNIX
UNIX Principles

Basic Utilities

There are some basic utilities everybody should know:
cd foo Changes the directory to foo
cp foo bar Copies a file or directory from foo to bar
ls [foo] Lists files in the current directory. If foo is given,

it will list the files in foo.
mv foo bar Renames a file or directory from foo to bar
mkdir foo Creates a directory named foo
rm foo Deletes the file foo
rmdir foo Deletes the directory foo
cat foo1, foo2. . . Reads the files foo1, foo2. . . to the screen
man foo Gives a manual page on command foo



GNU/Linux & UNIX
UNIX Principles

Live Demo

I Live demo time



GNU/Linux & UNIX
Customizability and Choice

Distributions

I A distribution is a managed way of distributing the Linux Kernel as well
as a set of default software

I Different distributions generally have different goals and design principles

I Common distributions include Ubuntu, Linux Mint, Debian, Arch, and
Gentoo

I Personal Preference: Mint for beginners, Gentoo for more advanced
users



GNU/Linux & UNIX
Customizability and Choice

Package Managers

I A package manager is a tool that manages installed applications and
packages on a system

I Each distribution generally only has one package manager and everybody
using that distribution uses the same one.

I Examples being that Ubuntu, Mint, and Debian all use apt, Arch uses
pacman, and Gentoo uses portage.



GNU/Linux & UNIX
Customizability and Choice

Window Managers

I A window manager is the program which, surprise, manages your
windows.

I On Microsoft Windows, this is not officially replaceable

I Responsible for the majority of how your system feels and looks

I Linux distributions come with a variety of window managers that fall into
two general categories: tiling and non-tiling



GNU/Linux & UNIX
Customizability and Choice

Desktop Environments

I Desktop environments supply things like the desktop icons and the menus

I This is a separate concept from the window manager which, as the name
implies, only manages how the windows look and act



GNU/Linux & UNIX
Customizability and Choice

DEs with non-tiling WMs

I The most commonly used desktop environments with non-tiling window
managers include Unity, GNOME 3, KDE, and XFCE

I Unity and GNOME 3 behave more like the Macintosh window manager
with a command bar of some sort with virtual desktops and search
commands.

I XFCE and KDE feel more like the MS Windows style with a start-menu
like construct with primary focus on clicking icons



GNU/Linux & UNIX
Customizability and Choice

GNOME 3 Screenshot



GNU/Linux & UNIX
Customizability and Choice

XFCE Screenshot



GNU/Linux & UNIX
Customizability and Choice

Tiling

I True Tiling window managers are not really seen on Mac or MS Windows.

I Tiling window managers generally do not use desktop environments

I The distinguishing feature of tiling window managers is that, as the name
implies, they “tile” your windows, automatically managing the layout.

I This is a lot more efficient in screen space.

I Also, they are generally keyboard driven, which is surprisingly efficient for
a graphical system

I The most common tiling window managers are i3, AwesomeWM, and
XMonad



GNU/Linux & UNIX
Customizability and Choice

StumpWM Screenshot (My Personal Desktop)



GNU/Linux & UNIX
Customizability and Choice

Tiling Live Demo

I Live demo time



GNU/Linux & UNIX
Customizability and Choice

Themes

I Each window manager and desktop environment include ways to change
the color themes and basic looks, so that one can make it look any way
they want.

I Some WM are so customizable that you are literally changing some of the
source code by changing the configuration (which is usually very easy to
do basic things and makes it possible to do advanced things)

I Examples being Awesome, XMonad, and stumpwm



GNU/Linux & UNIX
Customizability and Choice

Custom Kernels

I The most amazing part about Linux, however, comes from the fact that
is is Free Software

I Generally, it just works, especially in general systems like Mint and
Ubuntu

I However, if one has an issue with the system, one can either apply a
patch known to fix the issue rather easily or even rewrite part of it
themselves in order to fix it

I Contrast this to windows: you have a driver that doesn’t work or
software that causes a crash; your only choice is to not use it.

I I actually am currently running a custom version of Linux at home that
has some unique code that fixes a wiring issue in my sound card

I My windows install just doesn’t work fully correctly



GNU/Linux & UNIX
Editors

Editors/Development Environments

I Text editors are incredibly important for programming.

I There are only two editors that are worth your time for most
programming tasks

I Emacs
I Vim



GNU/Linux & UNIX
Editors

IDE

I An editor is different than an IDE in that a text editor is for editing text
while an IDE is a development environment

I It handles things about the language and project you are working on as
well as the text



GNU/Linux & UNIX
Editors

Holy War

I There is something called the editor "holy war" which is divided into two
camps: Emacs and Vim.

I However, this is not actually a problem, as, despite general
misclassification, Emacs is not actually an editor



GNU/Linux & UNIX
Editors

Emacs

I Emacs is a development environment:

I Understands languages
I Provides features:

I Autocomplete
I Spell checking
I Editor
I Other stuff

I Provides full programs:
I Email client
I IRC client
I etc



GNU/Linux & UNIX
Editors

Emacs (Cont.)

I Biggest reason why it’s not in conflict with Vim:

I Evil-mode

I Evil mode is a full vim implementation that replaces Emacs’s text editor

I Best of both worlds!



GNU/Linux & UNIX
Editors

Vim

I Text editor (the best)

I Modal keybindings

I Two main modes: normal and insert

I Insert mode is like most other editors you’ve used:

I Type to insert text, arrow keys to move, backspace/del to delete

I Normal mode is a command mode:

I Each key does some command



GNU/Linux & UNIX
Editors

Normal mode

I dd: Delete line

I yy: Copy (yank) line

I h,j,k,l: left,down,up,right

I i: insert mode

I a: go into insert mode after current character

I x: delete character

I much much more (beyond the scope of this lecture)



GNU/Linux & UNIX
Editors

Insert mode

I ESC to go back to normal mode

I everything else types text



GNU/Linux & UNIX
Editors

Live Demo

I Live demo time for Emacs/Vim



GNU/Linux & UNIX
Editors

Other editors/IDEs

I jedit also works on Linux

I Not very powerful

I IntelliJ Idea

I Best IDE for java. This is honestly the only one you should use for
real purposes, as it does most of the busy work for you.

I Many classes have you use Dr. Java: this is because we want you to
learn the language, not have an IDE do all the work for you.



GNU/Linux & UNIX
Programming Language Support

Programming Language Support

I Almost every linux system has python built in now-and-days

I Every real linux system has the ability to easily install support for other
languages:

I gcc/g++: c/c++ compiler
I ruby
I scala
I sbcl: common lisp compiler/interpreter
I openjdk: java runtime/compiler
I much more for haskell,php,racket,scheme,clojure,etc.,etc.

I Emacs has support for all of these languages and usually support for
autocomplete and other language specific features



GNU/Linux & UNIX
Programming Language Support

Live demo

I Compiling and running a c program

I Running a python program


	GNU/Linux History
	Sidenote about Free Software and GNU
	UNIX Principles
	Customizability and Choice
	Editors
	Programming Language Support

